Recreation
1) What Is Recreation?

2) Why Are We Modeling It?

3) Where Are We Modeling It?

4) How Are We Modeling It?
1) **What Is Recreation?**

activities occurring during leisure time involving interaction with or appreciation of the natural environment

2) **Why Are We Modeling It?**

3) **Where Are We Modeling It?**

4) **How Are We Modeling It?**
1) What Is Recreation?
 activities occurring during leisure time involving interaction with or appreciation of the natural environment

2) Why Are We Modeling It?
 environment influences decisions about how/when/where to recreate

3) Where Are We Modeling It?

4) How Are We Modeling It?
1) **What Is Recreation?**

activities occurring during leisure time involving interaction with or appreciation of the natural environment

2) **Why Are We Modeling It?**

environment influences decisions about how/when/where to recreate

3) **Where Are We Modeling It?**

(almost) anywhere and anyone data-poor and data-rich recreators in more- and less-developed countries parks and elsewhere

4) **How Are We Modeling It?**
A tiered approach

Tier-1
- Low model complexity
- Coarse (global) data availability
- Simple parameterization
 - Designed for data-limited areas
 - Easy to apply
 - First-cut estimates

Tier-2
- Medium model complexity
- Intermediate data availability

Tier-3
- High model complexity
- Fine (local) data availability
- Complex process-based models
 - Designed for data-rich areas
 - Substantial time to apply
 - More reliable and refined estimates
a tiered approach

- Model complexity
- Data availability

Tier-0
Tier-1
Tier-2
Tier-3
a tiered approach

Tier-0

Outputs: locations of human use

Inputs: locations of human use
Oyster Aquaculture

- Floathomes

- Clam Beaches

- Geoduck Fishing

- Crab Fishing

- Kayaking
Oyster Aquaculture
Floathomes
Clam Beaches
Geoduck Fishing
Crab Fishing
Kayaking
Oyster Aquaculture
Floathomes
Clam Beaches
Geoduck Fishing
Crab Fishing
Kayaking

decision to visit

food
water quality
hotels
archaeology
cost
roads
coral reefs
fish
parks
a simple model

decision to visit

visits

food
water quality
hotels
archaeology
cost
roads
coral reefs
fish
parks

visits

visits

visits
a simple model

visitation rate
(visits/time)

economic benefits
($$
$$)

decision to visit

food
water quality
hotels
archaeology
cost
roads
coral reefs
fish
parks
VISITATION RATE = PREDICTOR + PREDICTOR + PREDICTOR + PREDICTOR

- decision to visit
 - food
 - water quality
 - archaeology
 - cost
 - roads
 - coral reefs
 - fish
 - parks

- economic benefits ($$)
- visitation rate (visits / time)
VISITATION RATE = PREDICTOR + PREDICTOR + PREDICTOR + PREDICTOR

shellfish collectors = development + water quality + abundance + area + access + substitute
refuge visitors = ocean + park area + income + population
wildlife viewers = area + income + population
park visitors = water activities + park age + camping + distance to city + distance to town
park visitors = income + park age + year
national park visitors = area + fees + population + substitutes + income + fame
park visitors = recreational activities + distance to city + habitats (#) + trails
park visitors = canyons + historic sites + area + population + boating + wildlife viewing
park visitors = campsites + Lake Superior + distance to city + population + habitats (#) + + trails + bird habitat + bird species + development + built capital + park area
woodland visitors = population + forest attributes + ownership + parking spaces
etc …
VISITATION RATE = PREDICTOR + PREDICTOR + PREDICTOR + PREDICTOR

shellfish collectors = development + water quality + abundance + area + access + substitute
refuge visitors = ocean + park area + income + population
wildlife viewers = area + income + population
park visitors = VISITATION RATE = $\beta_1 \cdot$ PREDICTOR + $\beta_2 \cdot$ PREDICTOR + ...
distance to town
park visitors = income + park age + year
national park visitors = recreational activities + distance to city + habitats (#) + trails
canyons + historic sites + area + population + boating + wildlife viewing
park visitors = campsites + Lake Superior + distance to city + population + habitats (#) +
+ trails + bird habitat + bird species + development + built capital + park area
woodland visitors = population + forest attributes + ownership + parking spaces
etc ...

context dependent : each place is different (β_i values)

R² = 0.26 – 0.78
response variable

VISITATION RATE

n > 100,000,000
VISITATION RATE

response variable
response variable

VISITATION RATE

n = 73,000
response variable

VISITATION RATE

Map showing visitation rate with various regions highlighted.
VISITATION RATE

response variable
2005 - 2011

819,000 images in MN
83 MN parks
63,000 images in MN parks
11,000 park user-days
by 3,300 people
2005 – 2011

819,000 images in MN
83 MN parks
63,000 images in MN parks
11,000 park user-days
by 3,300 people
response variable

Pros
- Data availability
 - a proxy, related to real visitation rates

And Cons
- Parameterized using camera-owners
- Photo-density biased differently
 - Un-developed countries
 - At different scales
response variable

Pros
- data availability
- a proxy, related to real visitation rates

And Cons
- parameterized using camera-owners
- photo-density biased differently
 - un/developed countries
 - at different scales
1) **What Is Recreation?**

activities occurring during leisure time
involving interaction with or appreciation of the natural environment

2) **Why Are We Modeling It?**

environment influences decisions about how/when/where to recreate

3) **Where Are We Modeling It?**

(almost) anywhere and anyone
data-poor and data-rich
recreators in more- and less-developed countries
parks and elsewhere

4) **How Are We Modeling It?**
1) What Is Recreation?

2) Why Are We Modeling It?

3) Where Are We Modeling It?

4) How Are We Modeling It?

- geotagged photos as a proxy for where tourists go
- user-provided inputs
- optional default predictor variable
- proportion of visitor-days
- estimated expenditures
model inputs

INPUTS

area of interest (for parameterization)

cell size or local areas (for outputs)
VISTATION RATE = PREDICTOR + PREDICTOR + PREDICTOR + PREDICTOR
VISITATION RATE = PREDICTOR + PREDICTOR + PREDICTOR + PREDICTOR
VISITATION RATE = NATURE + CULTURE + SUPERSTRUCTURE + INDUSTRY + COST

distance to city
VISITATION RATE = NATURE + CULTURE + SUPERSTRUCTURE + INDUSTRY + COST

predictor variables

warehouse
production plant
manufacturer
storage
etc ...

distance to city
predictor variables

\[
\text{VISITATION RATE} = \text{NATURE} + \text{CULTURE} + \text{SUPERSTRUCTURE} + \text{INDUSTRY} + \text{COST}
\]

road
parking
airport
motel
car rental
visitor information
signage
etc …

distance to city
VISITATION RATE = NATURE + CULTURE + SUPERSTRUCTURE + INDUSTRY + COST

predictor variables

archaeological site
cemetery
historic building
sculpture
food
church
etc ...

warehouse
production plant
manufacturer
environmental
information
age
etc ...

distance to city
VISITATION RATE = \textbf{NATURE} + \textbf{CULTURE} + \textbf{SUPERSTRUCTURE} + \textbf{INDUSTRY} + \textbf{COST}

- waterfall
- cave
- canyon
- beach
- marine reserve
- significant tree
- peak
- etc ...

- archaeological site
- cemetery
- historic building
- sculpture
- visitor information
- etc ...

- warehouse
- production plant
- manufacturer
- etc ...

- distance to city

- predictor variables

- water
- road
- parking
- airport
- motel
- car rental
- etc ...

- visitation rate = nature + culture + superstructure + industry + cost
VISITATION RATE = NATURE + CULTURE + SUPERSTRUCTURE + INDUSTRY + COST

distance to city

predictor variables
predictor variables

visitation rate = nature + culture + superstructure + industry + cost

distance to city
predictor variables

\[
\text{visitation rate} = \text{nature} + \text{culture} + \text{superstructure} + \text{industry} + \text{cost}
\]
predictor variables

\[\text{visitation rate} = \text{nature} + \text{culture} + \text{superstructure} + \text{industry} + \text{cost} \]
VISITATION RATE = \text{NATURE} + \text{CULTURE} + \text{SUPERSTRUCTURE} + \text{INDUSTRY} + \text{COST}

\text{predictor variables}

density \quad (\#/\text{km}^2)

distance to city

waterfall
cave
canyon
garden
beach
marine reserve
significant tree
peak
etc …
VISITATION RATE = \(\text{NATURE} + \text{CULTURE} + \text{SUPERSTRUCTURE} + \text{INDUSTRY} + \text{COST} \)
+ \(\text{LAND/OCEAN USE/OVER} + \text{AREA} + \text{USER-DEFINED} \)

Predictor variables

- Distance to city
- Density \((#/\text{km}^2) \)
- Nature
- Culture
- Superstructure
- Industry
- Cost
- Land/ocean use/cover
- Area
- User-defined

Features

- Waterfall
- Archaeological site
- Cave
- Canyon
- Garden
- Beach
- Marine preserve
- Park
- Airport
- Visitor information
- Signage
- Coral
- Mangrove
- Seagrass
- Ocean
- Forest
- Agriculture
- Urban
- Grassland
- Protected
VISITATION RATE = NATURE + CULTURE + SUPERSTRUCTURE + INDUSTRY + COST
+ LAND/OCEAN USE/COVER + AREA + USER-DEFINED

predictor variables

density
(#/km²)

distance to city

coral
mangrove
seagrass
ocean
forest
agriculture
urban
grassland
protected
VISITATION RATE = \text{NATURE} + \text{CULTURE} + \text{SUPERSTRUCTURE} + \text{INDUSTRY} + \text{COST} \\
+ \text{LAND/OCEAN USE/COVER} + \text{AREA} + \text{USER-DEFINED}
\[
\text{VISITATION RATE} = \text{NATURE} + \text{CULTURE} + \text{SUPERSTRUCTURE} + \text{INDUSTRY} + \text{COST} + \text{LAND/OCEAN USE/COVER} + \text{AREA} + \text{USER-DEFINED}
\]
model outputs

Outputs

proportional visitation rate
(% of total visitor-days)
model outputs

Outputs

proportional visitation rate

(% of total visitor-days)

Approved Use

relative differences among local areas

relative change over time/scenarios (% change)

parameterization: states – countries

estimation: 1 – 10 km²
1) What Is Recreation?

2) Why Are We Modeling It?

3) Where Are We Modeling It?

4) How Are We Modeling It?
 - geotagged photos as a proxy for where tourists go
 - user-provided inputs
 - optional default predictor variable
 - proportion of visitor-days
 - estimated expenditures
Revenue From Expenditures

activities

\[= \text{visitation (visitor-days)} \cdot \text{participation}_i (\%) \cdot \text{expense to participate}_i (\$)\]

accommodation

\[= \text{visitation (visitor-days)} \cdot \text{occupancy (people/room/night)} \cdot \text{room ($/night)}\]

taxes

additional expenses

multiplier
Future

version 0.1
released this summer!

version 0.2
activities
originating location
tavel-cost model